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POSITION FROM GRAVITY

R. S. Mather
Geodynamics Branch

Geodynamics Program Division

ABSTRACT

Procedures for obtaining position from surface gravity obser-
vations are reviewed and their relevance assessed in the context
of the application of modern geodetic techniques to programs of
Earth and ocean physics. Solutions based on the use of surface
layer techniques, the discrete value approach, and the develop-
ment from Green's theorem are stated in summary, the latter
being extended to order e 3 in the height anomaly.

The representation of the surface gravity field which is required
in order that this accuracy may be achieved is discussed. In-
terim techniques which could be used in the absence of such a
representation are also outlined.

The role which can be played by the determination of changes
in observed gravity to a few microgal, in the definition of geo-
detic reference systems for long period studies in Earth physics,
is discussed and the consequences of changes of zero degree
summarized. The possible use of these techniques in future
geodetic practice is also assessed.
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POSITION FROM GRAVITY

1. INTRODUCTION

1.1 PREAMBLE

At first glance, it would appear that geodesists of today should be grateful for
the activities of exploration geophysicists which have made significant contribu-
tion to all the well known gravity data banks available at present. After all, it
is only in the past two decades that the course of events has looked favorably on
the collection of gravity information with solely geodetic objectives in view. All
the available surface gravity information has still not been able to provide
meaningful definitions of position on its own at the time of writing. The tech-
niques of satellite geodesy revolutionized practical determinations related to
position from a consideration of the Earth's gravity field and there is little argu-
ment that these methods give relevant position-related parameters with a pre-
cision of about 2-4%, the higher precision estimate being obtained on the use of
combination techniques incorporating surface gravity information with satellite
data.

Many factors have changed since the advent of the satellite era less than two
decades ago. A technical advance of importance is the development of the sur-
face ship gravimeter which provides a means of defining the surface gravity
field in ocean areas with a resolution which if used advantageously, can be shown
to be adequate for all present day requirements in Earth and ocean physics. A
second development of great significance is the sensational improvement achieved
in the precision with which absolute determinations of gravity based on inter-
ferometric techniques, can be made (e.g., Cook 1965; Faller 1965). The perma-
nent installation maintained by Bureau International des Poids et Mesures (BIPM)
at Sevres, France, has been achieving a measuring precision of ±3 p/gal as a
matter of routine for some years now (Sakuma 1971), improving the resolution
of g from 2 parts in 106 to about 3 parts in 109 in less than 10 years. To this
should be added the capability which has been available for some time, and en-
ables the measurement of differences in gravity with an accuracy of at least
1 part in 105 on land without any appreciable measurement time.

These significant improvements in metrology pose a series of interesting
problems which must be dealt with before the maximum geodetic information
can be obtained from the use of surface gravity measurements. In the first in-
stance, it becomes necessary to review the implications of adopting a rigid body
model for the Earth as the basis for computations of position from surface
gravity data. A further effect to be considered are changes in the Earth space
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location of the rotation vector and their influence on the determination of position
from gravity. Short period mass changes smaller in magnitude than Earth tide
effects, and possibly more difficult to model, may also have to be considered.
Into this category fall changes in atmospheric circulation patterns from some
model, variations in the water table and similar phenomena. Over a longer time
scale, it is necessary to consider the implications of a possible secular change
in the gravitational constant G.

As most of these effects are 7-8 orders of magnitude smaller than that of g, it
has been accepted practice to convert observed gravity g to the gravity anomaly
Ag by differencing g from the value of normal gravity y for a model of the Earth,
afforded by the value of GM, the rate of rotation o of the Earth, assumed to be
constant, together with the equatorial radius a and flattening f of an ellipsoid of
revolution which "best fits" the geoid. No allowance is made for the possibility
of variations with time, in any of the parameters defining the system of refer-
ence. This is not inconsistent with the concept of determinations relevant to a
certain epoch, provided

(i) the observations used are all made during the epoch considered; and

(ii) the accuracy sought is less than 1 part in 107 in g.

The order of magnitude of gravitational deviations from a solid Earth model are
smaller than o { 10- 6 g}. The largest effect is the diurnal Earth tide variation
with magnitude o {10- 7 g }. It has not been considered necessary at the present
time, to recommend the adoption of a systematic procedure for modeling and
removing the effect of Earth tides from observed gravity except when establishing
gravity standardization networks, in view of the limited accuracy of elevation data
used in computing the gravity anomaly. This would call for the acceptance of a
universally acceptable model for Earth tides, which would be used as a matter
of routine to correct observed gravity prior to use in geodetic computations.
Such corrections are only necessary at fundamental gravity stations at which
determinations are made with the highest possible accuracy for either the defi-
nition of the global gravity standardization network (Mather 1973, p. 68) or when
attempting to locate changes in the position of the Earth's center of mass (Geo-
center) with time (Mather 1972, p. 13). The need for applying such corrections
at other stations will depend on the extent of gravity coverage available globally
and whether the elevation datums have been unified at the 50 cm level.

Current practice accepts the validity of each individual nation's elevation datum
as well as its gravity datum. The continuance of such a practice is unwise if
systematic errors at the 50 cm level are not to occur in the final results. The
most taxing goal in the definition of position from surface gravity, is the deter-
mination of the geoid in ocean areas to the highest possible accuracy, in order
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that such results could be used with satellite altimeter data to recover the sea
surface topography. On present trends, it would appear that 5-10 cm accuracy
is desirable in the geoid determinations for a meaningful evaluation of the sea
surface topography. The determination of the latter is vital for the study of
tides in open oceans, ocean circulation and stationary characteristics of sea
surface topography.

It is in this context that the use of gravimetric techniques in the determination
of geodetic position should be reviewed. The present development covers

(a) the basic principles underlying the determination of position from
gravity;

(b) a review of some of the methods suggested to the present time, for
solving the boundary value problem in physical geodesy;

(c) techniques for the preparation of data sets for this task; and

(d) the geodetic interpretation of such solutions in Earth space.

In all sections, an assessment is made of the requirements which will have to
be met in order that the independent evaluation of selected geodetic characteris-
tics available from surface gravity determinations, can be used in the resolution
of some possible ambiguities from other methods when applied to high precision
studies in Earth and ocean physics.

1.2 A GUIDE TO NOTATION

1.2.1 Recurring Symbols

a = equatorial radius of the ellipsoid of reference

d = separation vector between equivalent points P on the Earth's surface
and Q on the telluroid

dz = increment in orthometric elevation

do = element of surface area on unit sphere

e = eccentricity of the meridian ellipse; e2 = 2f -_f2

F(b) = f(j) sin ; 

f = flattening of meridian ellipse

f(U') = Stokes function = cosec 1/24 + 1 - 5 cos qj - 6 sin 1/2b -

3 cos + [log (sin 1/2 q (1 + sin 1/2))]
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g = observed gravity at the surface of the Earth

h = ellipsoidal elevation

hd = height anomaly

hn = normal height, defined prior to Equation 6

M = mass of the Earth, including the atmosphere

M {X} = global mean value of X

m = awo2 / T e

m' = a 3 w 2 /GM = m + o{f2 }

N = elevation of geoid above ellipsoid

N= unit vector normal to the surface of the Earth

Nf = Free Air Geoid; the Stokesian contribution to hd

Nc = Indirect effect to free air geoid; non-Stokesian contribution to hd

R = geocentric distance

R = radius of sphere containing all topography (Brillouin sphere)

Rb = radius of sphere which is internal to the Earth's surface (Bjerhammar
sphere)

R = mean radius of the Earth

r = distance between the point of computation P and the element of surface
area dS

r = 2 R sin 1/2 4b

ro = 2Rm sin 1/21 

S = surface of the Earth

U spheropotential due to the system of reference

U0 = spheropotential on the surface of the reference ellipsoid

Vd = disturbing potential

W = geopotential

Wo = potential of the geoid

Xi = geocentric rectangular Cartesian co-ordinate system X1 X2 X3

xi = local rectangular Cartesian co-ordinate system xl x2 x 3 with the x 3

axis along the local normal, the x 1 x2 plane defining the local horizon,
with axes oriented north, east respectively.
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a = azimuth

,8 = ground slope; subscripts 1 and 2 refer to components north and east

y = normal gravity due to the reference system; subscript 0 refer to values
on the reference ellipsoid; subscript e refers to equatorial value.

A g = gravity anomaly at the surface of the Earth, defined by Equation 10.

AW = geopotential difference with respect to the geoid

8 g = gravity disturbance

X = longitude, positive east

: = components of deflection of the vertical; subscripts 1 and 2 refer to
those in north and east directions respectively

= deflection of the vertical, positive if outward vertical lies north, east
of normal.

D = density of surface layer, except in section 3.4.

b = latitude, positive north; subscripts c, a and g refer to geocentric,
astronomically determined and geodetic latitudes respectively

b = angular distance at geocenter between the point of computation P and
element of surface area dS.

o = angular velocity of rotation of the Earth

3

V= x i
i=l

1.2.2 Conventions

a = b + o {b2 } - terms whose order of magnitude is equal to or less
than b2 are neglected (b < 1)

Xaya = X1Y 1 + x 2 Y2

x i = ai bj b x i = a ib 1 + ai 2 b2 + ........ , there being as many
equations as possible values of i

a - c - a is approximately equal to c

5



2. BASIC PRINCIPLES

2.1 THE SYSTEM OF REFERENCE

The determination of Earth space position. from gravity observations at the
surface of the Earth, as pointed out in section 1, is implied from deviations of
observed gravity from those at an "equivalent" point on some Earth model,
whose parameters are completely defined. Current geodetic practice (IAG 1970,
p. 12) specifies a rigid body model by the following parameters.

(a) The value ,u (= G M) where G is the gravitational constant and M the mass
of the Earth.

(b) The constant rate of rotation c of the rigid Earth model.

(c) The equatorial radius a of an ellipsoid of revolution which presumably
is one of best fit to the geoid.

(d) The dynamic form factor J 2 which is equivalent to a value of a flattening
f for the reference ellipsoid.

It is conventional to choose a reference ellipsoid whose equatorial radius is such
that it has the same volume as the geoid. This is not a necessary condition if
zero degree effects are taken into account when formulating a solution for the
boundary value problem. What is more important in solutions which aspire to
accuracies greater than the order of the flattening (i.e., 30 cm in the height
anomaly), is that the ellipsoid lies everywhere within the physical surface of the
Earth. This enables the use of Laplace's equation in the representation of the
appropriate disturbing potential without approximation.

The adoption of such a procedure without an equivalent adjustment in A could
cause larger values of the gravity anomaly which would in turn, call for greater
caution in developing computer algorithms for numerical work.

It can be stated without being contentious that the value adopted for a has to be
based on some determination of the scale of Earth space. This would be provided
by either the measurement of long arcs at the surface of the Earth by classical
techniques (e.g., the Pageos baselines) or else by laser ranges to either satellites
or the moon. All determinations of scale are therefore based on the velocity of
light.

The value of the flattening f of the reference ellipsoid is best deduced from the
second degree zonal harmonic obtained from the secular variations in the right
ascension Q of the node and the argument w of perigee of near Earth satellites.
The precision claimed at the present time (e.g., Lerch et al 1972, p. 27) for this
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harmonic is 1 part in 105, the required relation being (e.g., Mather 1971a,
p. 85)

1 m-2 3 1
C

2 0 - f - m' f + f 2 + o{f3 (1)

where

a 3 0 2

m' = GM

w being the angular velocity of rotation of the Earth.

The exact relation between the observed secular variations /20 and C20 is (e.g.,
ibid, p. 151)

3 (G M)1/V2 a 2
2(1 - e 2)2 a 7 /2 2 0 ' (2)

a
s

being the equatorial radius of the satellite orbit, e
s

its eccentricity and i its
inclination.

The change df in f due to changes da, d c and d(GM) in a, o and GM are given
by

3 (3 da dwo\ 1 d(GM)
df m3 + 2 2 GM (3m' + C 2 0 ) + of 2f df} (3)

The ratio df/ f is therefore of the same order of magnitude as d (G M)/ G M for
a specified value of a as the ratio dw/w is at least an order smaller if these
ratios reflect the precision with which each of the quantities are determined.

It is all important that the rotational characteristics assigned to the reference
model are exactly equivalent to those influencing gravity as measured at the
Earth's surface. This is implicit in deriving Equation 60 from Equations 58 and
59. The rotation vector in Earth space is not fixed and hence deviations from
the rigid body model adopted for any system of reference (e.g., IAG 1970, p. 24).
The rate of rotation w is subject to secular variations due to the effects of tidal
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friction, and certain short period effects which, in theory, have to be accounted
for when reducing observed gravity to a rigid body equivalent of the Earth, are
not of practical consequence as they have a magnitude of less than 1 part in 109

in g. A second factor is the change in position of the instantaneous axis of rota-
tion with respect to the Earth's crust. The total contribution to observed gravity
of the rotation is the appropriate resolute of

g = p a 2 (4)

directed away from the axis of rotation and perpendicular to it. The changes in
g, due to changes dp in p, which is the distance of the point at which gravity is
measured from the axis of rotation, and dc in co is given by

gr gr(2 -- + p + O{10 - 12} (5)

The effect of the ratio dw/w will be less than 1 i/gal on observed gravity for a
10 msec variation in the length of day and hence this term is not of significance
in the reduction of observed gravity, if the latter were restricted to some epoch
of observation. The effect of polar motion is o { 1 R/gal} (Bursa 1971).

More significant short period changes in observed gravity have been reported by
Sakuma (1971) after modeling the effect of Earth tides. It should be noted that a
1% change in the local atmospheric density is of o {10 utgal} while quasi-stationary
changes in the local geological formations, e.g., in the local water table, could
cause gravitational effects of this same magnitude. It is therefore important that
both the atmosphere and the local geology be modeled in the vicinity of those
gravity stations at which g is to be re-measured at intervals of time with the
highest possible precision.

The dominant gravitational variation with time is that due to Earth tides, with
magnitude of o { 10 2 /gal } and Earth models for this effect are well known in the
literature (e.g., Melchoir 1966). It is important that an unambiguous Earth tide
model at the 10 g gal level be uniformly adopted when specifying gravity values
at stations comprising the global gravity standardization network described in
section 4.

The final parameter defining the reference system is p (= G M). The commonly
accepted values of G M are all based on the analysis of interplanetary space
probes. The technique used can be briefly summarized as follows (Esposito 1972).

'8



Doppler data from interplanetary spaceprobes is analyzed using numerical
integration procedures for the determination of the motion of the probe with
reference to a geocentric inertial co-ordinate system. Perturbations due to the
Earth's departure from a sphere, solar radiation pressure, planetary and lunar
gravitational effects and spacecraft attitude control forces are modeled when
effecting this solution which also provides revised estimates of tracking station
co-ordinates as a by product of the solution. The main conclusions of relevance
to the present review are the following. Firstly, the value of GM is based on the
velocity of light. Secondly, the potential U0 on the surface of the reference
ellipsoid, assumed to be an equipotential is related to the adopted values of G M,
a, f and wo by the relation (e.g., Mather 1971a, p. 83)

GM sin-1 e 1-, + 2 2U -a e + 3 a

where

e 2 = 2f - f2

As GM has an uncertainty of 1 part in 106 at the present time, it follows that U0

will differ from the true potential of the geoid consistent with Newtonian gravita-
tion, as scaled by the velocity of light by at least 1 part in 106. If U0 were as-
sumed to be equal to the potential W0 of the geoid, it would be tantamount to im-
posing a second scale constraint when using gravitational techniques in geodesy.
The only way out of this impasse is to attempt to estimate W0 by using purely
geometrical techniques and thereby make position determinations using gravity
data consistent with the scale provided by the velocity of light. In the interim,
it must be borne in mind that all position determinations based on gravity may
have constant scale error of up to 1 p.p.m. on this account.

In summary, it may be stated that

(a) Only Earth tide effects need to be allowed for in all work except those
determinations required for the monitoring of co-ordinate systems;

(b) Position determinations based on gravity are liable to have a constant
scale error of up to 1 part in 106 due to the uncertainty in G M.

The following conclusions may therefore be drawn about the adoption of a rigid
body model of the Earth as an intermediary in the definition of position from
gravity, with the highest possible precision as the ultimate goal.
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(a) The only departures from rigidity which need be considered for solutions
of the boundary value problem are the effect of Earth tides on gravity
observations constituting gravity standardization networks.

(b) An error in GM will give rise to ambiguities in scale with corresponding
magnitude unless independent techniques are developed for using geo-
metrical means for determining the potential W0 of the geoid. For
further discussion, see section 5.1.

2.2 DATA REQUIREMENTS

Observed gravity will be the results of two kinds of determinations. The first
type will be absolute determinations with the highest precision possible while the
second will be point values established by differential techniques based on the
absolute determinations, with a precision which is at least one order of magnitude
inferior. The practice adopted in gravimetric determinations is the use of gravity
observations and a knowledge of the surface topography of the Earth to determine
the separation vector d between "equivalent" points on the reference model,
whose Earth space position is known, and the physical surface of the Earth, as
illustrated in Figure 1. The separation vector can be completely defined by the
height anomaly hd and the angles 6, which are more completely defined in the
next sub-section.

The most exacting requirements are called for in the definition of position from
gravity when determining the geoid for ocean physics applications, where present
estimates of requirements call for resolution at the ±10 cm level. The equivalent
order of magnitude is e3 (i.e., 5 parts in 104 ) which can be assessed as +50 RLgal
in the gravity anomaly Ag. On the basis of the discussion in the previous sub-
section, it would be adequate to maintain a rotating rigid body model as the system
of reference and apply the appropriate reductions to observed gravity to make the
measurements compatible with the model. The position so defined will be unaf-
fected by short period time variations in the Earth's gravitational field.

The nature of the reductions necessary will depend on the purpose for which the
gravity data is required, the accuracy with which it has been established and the
nature of the elevation data available for its reduction. Corrections for Earth
tides are necessary both for stations monitoring changes in the global reference
system (Mather 1972, Sec. 3.3) and to an accuracy which is one order of magni-
tude less for stations in the global gravity standardization network. The model
adopted for Earth tides should therefore be capable of resolution to 1 /gal. Some
difficulty may be experienced in removing ocean loading effects in coastal areas
which influence the tidal correction in the second significant figure (Hendershott
1972).
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REFERENCE ELLIPSOID U = U
o

Figure 1. The Separation Vector d and the Reference System

Corrections for short period variations in the stratification of the atmosphere
and the stratigraphy in the vicinity of gravity stations monitoring the reference
system are also necessary. This presupposes the existence of "accepted" models
for both the atmosphere and the local stratigraphy, and the effects meteorological
changes may have on them. While Earth tide effects should be allowed for when
making any gravity determination, the summary in section 4 indicates that the
effect of omitting the correction on determinations of position from gravity is
likely to be negligible as the tidal effect has the characteristics of a random
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measurement error. All further discussion will assume observed gravity g to
be measured on a solid Earth, rotating with a uniform angular velocity, the
gravitational effects of polar motion being allowed for when gravity data is used
for the definition of geodetic reference systems.

The formulation of relations at the surface of the Earth is based on the following
principles.

(a) An estimate is available of the geocentric co-ordinates of the point P at
the surface of the Earth. In classical terms, these surface co-ordinates
((6a, Xa) are related to the vertical at P by astronomical determinations,
and can be determined at best to a factor or two better than 1 part in 106
(i.e., ±6 m in position in each co-ordinate). This estimate differs from
the true geocentric co-ordinate by amounts up to 10 - 4 radians, depending
on the magnitude of the local deflection of the vertical.

(b) The displacement of P above the equivalent point P0 on the ellipsoid is
defined by the normal elevation hn, which is related to the difference in
geopotential AW between the equipotential datum for elevations (the
geoid) and P as obtained from levelling by the relation

P

AW =-fgeoid gdz,
geoid

g being observed gravity for the section of the line of levelling where
the orthometric height difference is dz. The equation defining hn in
terms of AW is the relation (e.g., Mather 1971a, p. 100)

AW AW / 2W 1
h n (1 + m + f - 2f sin2 96) + T + ° f3 

where y0 is the value of normal gravity on the reference ellipsoid and

a 2

m - (6)

ye being the value of normal gravity at the equator, and AW is treated
without regard to sign for points exterior to the geoid.
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It has been shown (Mather 1973, sec. 4.3) that the data requirements for the
determination-of the height anomaly hd with a precision equivalent to that pos-
sible in establishing hn are well within the capabilities of measuring and data
sampling techniques available at the present time.

Thus position determination from gravity in any absolute sense

(a) requires a knowledge of astronomical co-ordinates; and

(b) a global representation of the gravity anomaly field.

The resolution of the information from positional astronomy at the present time
will have to improve by a factor of 50 before the horizontal determinations are
of adequate accuracy for the complete determination of position by this method
alone. Such a determination will also require the determination of deflections of
the vertical 6: to o {10- 4 a}).

It can therefore be concluded that the determination of geocentric position from
positional astronomy and surface gravity to accuracies much in excess of 1 part
in 106 may not be a practical possibility in the foreseeable future. The determi-
nation of the height anomaly, on the other hand, will remain a problem of funda-
mental interest as it forms an integral part in the definition of sea surface
topography from space. The ensuing development will continue to deal with the
complete development necessary for the determination of position from gravity,
but only in outline. More detailed review will be confined to the techniques for
determining the height anomaly.

2.3 BASIC RELATIONS

The formulation of the Molodenskii problem (Heiskanen and Moritz 1967, p. 291)
can be treated as one which seeks the determination of the separation vector d
between "equivalent" points P (6g, kg, Wp = W0 + AW) on the Earth's surface
and Q(( a , Xa , UQ = U

o
+ AW) on the associated spherop U = UQ of the refer-

ence system, as illustrated in Figure 1. If the subscripts a refer to values de-
termined astronomically determined at P, the separation vector is given by

d = Ra,, Z + hd, (7)

where R, are the meridian and prime vertical radii of curvature of the associated
spherop, a are unit vectors oriented along the tangent plane to the spherop at Q
in the meridian and prime vertical respectively, while 3 is the unit vector along
the outward normal at Q. The subscripts g refer to the surface co-ordinates of
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the point P' in Figure 1 on the associated spherop U = UQ whose normal passes
through P.

The locus of the point Q is called the Telluroid and mirrors the physical surface
of the solid Earth and the oceans to order f 2. The system of reference is based
on the family of spherops (U = UO + AW) exterior to the reference ellipsoid,
defined by the geometrical parameters. a and f, and the gravitational characteris-
tic /u (= GM), with the constraint that the surface of the reference ellipsoid is
the equipotential surface U = U0 . As pointed out in section 2.1, there is no
necessity for the ellipsoid to be forced to have the same volume as the geoid
(W = WO) if terms of zero degree were retained in the solution. In such circum-
stances, it is easy to show that (e.g., Mather 1973, p. 14) the height anomaly
(hd in Figure 1) is given by

hd Y [Vd - (WO - U)] + o{103 m} (8)

where Vd is the disturbing potential at P given by

Vdp = Wp - Up. (9)

The quantity Wp is defined by the value WO of the geopotential on the equipotential
surface used as the datum for geodetic levelling, and the observed difference of
geopotential AW between this surface and P, by the relation

Wp = WO + AW.

The datum in use at the present time is that afforded by mean sea level derived
from tide gauge readings over periods in excess of one year. As solutions of the
geodetic boundary value problem require definitions which are applicable globally,
it is essential that all regional definitions of mean sea level are correlated on a
world wide basis to a common epoch in the first instance before the differences
in geopotential (A W) can be considered to be referred to an equipotential surface
of the Earth's gravitational field. It has been estimated that systematic errors
of o {±10 cm} could result in solutions of the boundary value problem if errors
on this account were of o {±30 cm} and each datum covered o {106 km2 } (Mather
1973, p. 68).

A second problem of consequence and of which little is known at the present time,
are the quasi-stationary departures of the sea surface from the equipotential
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surface defined by the results of geodetic levelling. The phenomenon, known as
stationary sea surface topography, has been reported along coastlines in many
parts of the world. A summary of results is given by Hamon and Greig (1973),
indicating magnitudes of 30-50 cm being commonplace, with one reported as
large as 1.7 m. This effect is discussed further in section 4.

The gravity anomaly A g at the surface of the Earth is defined by

Ag = gp - Yp, (10)

where gp is the value of observed gravity at P, corrected for departures of the
Earth from the rigid body model, as described in section 2.1, and yp, is normal
gravity due to the reference system at P' in Figure 1. yp, is obtained from the
equivalent value y0 of normal gravity on the reference ellipsoid, given by the
commonly used relations of the type (e.g., Heiskanen and Moritz, p. 79)

To0 -yTe [1 + ]8 sin2 ig + /2 sin 2 g + o {f3}] (11)

where ye is equatorial gravity defined by the values adopted for a, f, G M and w
(e.g., Mather 1971, p. 87; IAG 1970, p. 48), ,8 = o (f} and ,82 = o f 2 }, using the
relationship (e.g., Mather 1971a, p. 101)

= 0 2 a [1 + f + m - 2f sin2 - + o (12)P 0 a 2 a T

A W having the same significance as in Equation 6.

Possible sources of systematic error in the computed value of Yp, and hence A g
arise in the definition of g and AW. While the effect of. errors in the latter have
already been described, c)g should be defined to ±0.4 arcsec if Yp, is not to have
an error of ±10tL gal. It is therefore important to use any of the global solutions
available at the present time for the definition of geocentric position, to evaluate
geocentric orientation parameters for each of the regional geodetic datums
(Mather 1973, p. 16) before computing gravity anomalies for high precision de-
terminations rather than use values referred to regional geodetic datums.

The equation described as the fundamental equation in physical geodesy (Heiskanen
and Moritz 1967, p. 86), defines the relationship between the disturbing potential
Vd and the gravity anomaly Ag as (Mather 1973, p. 18)
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d h Ag + ~ hd (+ g i2 + o {1/gal}) (13)

where the terms within the bracket take into account effects smaller than o {f Ag},
; being the deflection of the vertical at the point considered.

The philosophy underlying Equation 13 is the contention that the geocentric posi-
tion of P is not known, though estimates adequate for the linearization of the
quantities involved, are available. Circumstances may well arise in the future
where accurate horizontal and vertical surveys may be available and the principal
practical role of techniques in physical geodesy is the determination of the geoid
in ocean areas for studies of sea surface topography. In such a situation, it is
envisaged that all the land masses are linked to a geocentric system of reference
using laser ranging methods and/or VLBI, giving at least one fundamental station
on each geodetic datum. Horizontal survey methods together with geodetic and
astrogeodetic levelling will provide data for completely defining geocentric posi-
tion of points on any regional network which includes at least one fundamental
station, with an accuracy of 1 part in 106. As surface ship locations can be rou-
tinely determined to within one order of magnitude greater, it is of relevance to
examine the gravity disturbance $g (e.g., Hotine 1969, p. 312) given by

aVd 1
g -- gp - a/p ' h + 2 g 2 + o {1 gal} , (14)

where the uncertainties in defining the position of P can be estimated as ±0.2 arc-
sec in horizontal position and ±2 m in normal displacement, if the astrogeodetic
levelling is based on an adequate distribution of stations. The effect of errors
dud to the first source on 8 g are o { 1 tgal } while that of those due to the second
are o {5 x 10 2 pgal }). Thus the gravity disturbance, whose order of magnitude is
not significantly different from that of the gravity anomaly, is likely to have errors
of o {5 x 102 Lgal} which are probably correlated with wavelengths in excess of
1000 km (e.g., see Mather, Barlow and Fryer 1971, Fig. 4.2) unless radically new
techniques are available for determining

either geocentric position at each gravity station such that the radial com-
ponent is resolved with systematic biases of wavelengths longer
than 1000 km held to below the 20-30 cm level;

or the contribution of astro-geodetic levelling with the same resolution
as geodetic levelling.
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The projection of present day techniques does not lead to the conclusion that
there would be significant advantages in using the gravity disturbance 8g in
preference to the gravity anomaly A g in formulating solutions of the boundary
value problem.

The separation vector d, illustrated in Figure 1, can be represented by com-
ponents along the axes of a local Cartesian co-ordinate system x i at Q, with the
x3 axis oriented along the spherop normal at Q and the x 1 x2 plane lying in the
horizon at Q, as illustrated in Figure 2, in accordance with Equation 7. d is of
importance in defining the geocentric orientation vector 0 for regional geodetic
datums using surface gravity data (Mather 1971b, p. 62). A description of how
such information could be used to assemble a world geodetic system linking the

x3

P (g, Xg, Wp =Wo +AW)

(EAST)

(a, X, UQ= UO+ AW)

SPHEROP U = UQ= UO + AW

X1

cI-

Figure 2. The Separation Vector and a Local Cartesian Co-Ordinate System
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major land masses by comparing the separation vectors as obtained from
gravimetry and astro-geodesy is given by Mather (1971c).

The mainstream of practical endeavors at the present time is in the determina-
tion of the height anomaly hd. Over 90% of the power in such determinations
comes from the "free air geoid" Nf obtained by the use of free air anomalies
(i.e., gravity anomalies to the order of the flattening) in Stokes' integral which
is set out in Equation 16. The latter is a solution of the boundary value problem
for a spherical Earth which is exterior to all matter and whose bounding surface
is an equipotential (Stokes 1849).

The deflections of the vertical da are usually obtained using the principles gen-
erally attributed to Vening Meinesz (1928). Working on a spherical reference
system, he showed that if the separation Nf between the physical and reference
surfaces were given by Stokes' integral

Nfp 4 7rr f (j) Ag dor, (15)

where Ag is the value of the gravity anomaly at the element of surface area dao
on unit sphere which is at an angular distance q from the point of computation P,
f(¢) being Stokes' function (e.g., Heiskanen and Moritz, 1967, p. 94), then

3N
e - (16)

as illustrated in Figure 3, where xa is a two-dimensional Cartesian system in
the horizon plane at the point of computation P, with the xl axis oriented north
and the x2 axis east. It is not difficult to show in the case of Stokes' problem
that

1 jj a ( cos A,, Ag du, (17)

as

X 1 c
3 = - RaL D cos Aa, (18)
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P - OP d
Rds

Figure 3. The Vening Meinesz Problem

where

1
A1 = a and A2 = a, (19)

a being the azimuth of dc, from P. This follows as only q in the kernel of the
integral at (15) changes as the point of computation changes from P to some
adjacent point Q in the case of Stokes' problem.

The required expression for the Molodenskii problem is not the same as the
elevation hp of P appears in the kernel of the integral. As the deflection of the
vertical at the surface of the Earth is obtained from the height anomaly hd (ibid,
p. 312), which is given by

hd hd (, A, hp) = .hd (,, a,, hp), (20)

where a, is the azimuth of P from the element of surface area do, it can be
shown that (Mather 1971c, p. 88)

1 d X hhd a 1+
La = h Lb ,lv X ua + aa 2 cc in(21)
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u, being a set of curvilinear surface co-ordinates on the reference surface, and
h, the associated linearization parameters. For the latitude-longitude system

1 = , u2 = X, (22)

while

h = R and h 2 = R cos (23)

for a spherical approximation of the Earth. In the case of solutions to order e 3 ,

h i = (p + h) ; h 2 = (v + h) cos X, (24)

p and v being equivalent to Ra defined in Equation 7.

The detailed development of solutions of the boundary value problem in this case
use the geocentric latitude qc instead of the geodetic latitude A, all parameters
referring to quantities relating angular displacements between the geocentric
radii to the pole, P and dr.

As explained above, the principal task in determining position from gravity, is
the definition of the height anomaly hd, which is equal to the geoid height N in
ocean areas, where AW = 0. The next section deals in summary with some of
the methods which have been proposed for obtaining the height anomaly.

3. TECHNIQUES FOR THE SOLUTION
OF THE BOUNDARY VALUE PROBLEM

3.1 INTRODUCTION

Attention has been confined to three techniques whose use to obtain solutions to
the boundary value problem has been extensively reported in the literature. The
methods considered deal with formulations of solutions to what is known as
Molodenskii's problem, at the physical surface of the Earth. It is not intended
to formulate solutions for surfaces other than that of the Earth, e.g., the geoid,
obtained by defining N instead of h'd. Neither is any attempt being made to dis-
cuss the merits of regularization (e.g., Molodenskii et al, p. 45 et seq.), where
the conditions applicable to Stokes' problem are artificially created by the trans-
fer of mass to within the geoid. The main advantage claimed for such techniques
is a utility which is desirable when the surface gravity coverage is poor, as the
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adoption of certain types of mass transfers enables more reliable predictions of
gravity anomalies for the chosen model. The validity of such claims is open to
question if the end-product of the calculations is to be a meaningful determina-
tion of positional parameters, which can only be as good as the available data.

The three techniques which will be covered, ostensibly do not require a knowledge
of the stratification of matter within the Earth, defining solutions in terms of an
"adequate" sampling of gravity at the surface of the Earth, in conjunction with a
complete definition of the associated topography. They can be classified as

(1) Surface layer solutions;

(2) Solutions from data sampled at discrete points on the Earth's surface;
and

(3) Solutions from Green's third identity.

It is of interest to summarize the basis of each of these methods.

3.2 THE SURFACE LAYER TECHNIQUE

This method, initially developed by Molodenskii (Molodenskii et al 1962, p. 118
et seq.) was first published in 1949. Considerable material is available on the
problems associated with the practical use of this technique by Moritz (1966;
1970; 1972) and members of the Soviet school (e.g., Brovar 1964; Marych 1969;
Yeremeyev 1969; Pellinen 1972). The derivation calls for the representation of.
the disturbing potential Vd at the surface of the Earth by a surface layer of den-
sity 'F such that the former can be represented at any point P either on the
surface of the Earth or exterior to it by the relation

dp dS, (25)r

where there is no restriction on the shape of the surface S. It can be shown that

( Vd) ' (f S
h(T = - 2 77 Ip cos 8p + h ( S) (26)

where the subscript p refers to evaluation at P, 8p being the ground slope at P.

21



The first term on the right appears due to the indeterminance at P itself. The
inner zone in this region is treated as a disk (e.g., Heiskanen and Moritz 1967,
p. 129), the negative sign being introduced as the outward derivative is required,
while the attraction of the disk is toward the geocenter. The cos fi term allows
for slope of the surface of the disk with respect to the vertical. No approximations
are involved in the derivation of Equation 26.

The ensuing development, which is well documented by Heiskanen and Moritz
(ibid, p. 300) can be summarized as follows, retaining those terms whose contri-
butions are greater than o {fhd}. On using Equations 8, 13, 25 and 26,

WO - UO /a\
Ag = 2 7Tp cos 8p - h

TP P 

(27)

- ff[ (7)

2
R

P

Yp- I (-ar (D dS + o{f Ag} -

+o{ f ah'

r = (Rp 2 + R2 - 2 R R cos ¢)V 2

it follows from Figure 4 that

* (+) + f2 ( )

1
= - - [R

r 3 P
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2R r 3
p

+o{f R r
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(30)

Equation 27 can therefore be written as
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W 0 U0 f-U \ u R2 - R2]

nAg = 27 co 8P -I - + ( dS + o {f Ag}.
Ag 2 Y - 2Rr 2R r 31

(31)

The solution suggested by Molodenskii (1962, p. 120) for Equation 31 is based on
the method of successive approximations where the surface S of the Earth is
transformed into the surface S using a parameter k which specifies the relation-
ship between the geocentric radii R and R to equivalent points on S and S by the
relation

R = Rm + k(R - Rm), (32)

where Rm is the mean radius of the Earth, and 0 < k < 1. Thus S and S coincide
when k = 1, while the classical Stokesian case in which no topography exists ex-
terior to the geoid, is obtained when k = 0. This is equivalent to scaling all ele-
vations and grades by k from h and tan /3 to h and k tan fi where

h = kh

and the related angle /3 is given by

= cos- ([1 + k 2 tan2 i]-/2) (33)

Other relevant conversions are

r = r2 + k 2 (h- h )2 + o{f }, (34)

where ro is the expression for the spherical case, given by

1
r0 = 2Rm sin 2f . (35)

Molodenskii simplifies the solution by introducing the parameter X defined by
the equation

R2

X = - sec /, (36)
R2

m
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which, when taken in conjunction with the relation

dS = R2 dor sec /, (37

where d o is the element of surface area on unit sphere, enables Equation 31 to
be written as

R 2
A g m 2 7 X Cos 2 P -

R 2 P 
.,,p

Wo - Uo

¥p
Pak

p

(38)

3R 2 r(
- 21Pff -do- 2 1? J 

2 r r R2 -'R 2

2R-J r3 X d + o{f Ag}.-f RP ff r 3

It can be shown (ibid, p. 121) that if X were expanded in a power series of the
form

X = L Xii , (39)
i=0

and on introducing a set of functions Gi, the use of Equations 33, 34 and 39 in
Equation 38 gives a system of integral equations

W0 - U0

Gi = 27T Xi + 2 R
m

3- R f x doa
2f Rm 0 dr

on equating the coefficients of k', and as R 2 - Rp2 = 2R 2 (h - hp)
The quantities G. are obtained in this manipulation as

Go = Ag
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i = 0, .o, (40)

+ o {fR2 }.
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Jr h - h (42)

with more complex expressions for higher values of i (ibid, p. 122), being of the
form

Gi = Gi (h, hp, Xi, X2 ...... X( 1)) (43)

Equation 38 reduces to Equation 40 when h = hp = 0 and , = 0. The Molodenskii
problem is equivalent to Stokes' problem in such a case, the solution of which is
Equation 15, which, on taking zero degree effects into account (Mather 1971c,
p. 85) can be written as

1
Nf = [Vd + Wo - Uo]

Y

W - U RmM{Ag} Rm M(
- _ + 4 J f (q) A g dc,TY T 4 7T y'

where M {A g} is the global mean value of Ag.

The substitution of Equation 25 in its appropriately modified form, in Equation 40
gives

Xi = 27T Ti + ,[~~~ (45)

on adoption of the representation

Vd = E ki Vdi
i=o =o ki

- do- + o{fVd}.
or

The second equality in Equation 46 would be consistent with Equation 25 only if
there were no topography. If this inconsistency were removed (Molodenskii et al
1962, p. 123), the final expression for the height anomaly would be a series in G.
embedded in the form set out at 44 with some topographic correction terms
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whose effects are purely local in character and need only be considered in areas
of rugged topography, being functions of r 3 , the series being obtained when k = 1.
In this case,

Wo - Uo M{G} Rm. 
hd -R- + 47Ty It f () G d o + TR T7 7J

G = Gi
i.=O

(47)

(48)

and T are the series of topographic correction terms whose form is given by
Molodenskii (ibid). Moritz (1966, p. 91) has given alternative forms for G 1 , and
shows that if gravity anomalies are linearly correlated with elevation, G1 reduces
to the terrain correction. Thus the combination of Equations 42 and 45 gives

Ag dof = h h gP R22
GT1 = 2v7 0

ro3

f (h - h )2 d,
0a

(49)

the second equality being based on the assumption of linear height correlation of
gravity anomalies (ibid, p. 88).

Notes:-

(1) This technique will be practically effective only if the contributions of the
higher G

i
are significantly smaller than those obtained for i = 0 and 1. The

evaluation of any particular G
i

presupposes a knowledge of all Xj (j < i),
which- in turn, are defined through Equation 45.

The solution is therefore iterative, and as the series in Xi is theoretically
infinite, it is desirable that

X : o{10-1 } Xi -1
1 i~~~- i (50)

for efficient practical evaluation. As G
o

is the gravity anomaly, the first

27

where



iteration is the free air geoid, which contains over 90% of the power in the
solution. It should therefore require only three iterations to obtain a solu-
tion to order e3 in hd, if Equation 50 were satisfied.

(2) There would be little difficulty in meeting this criterion if the ratio (h - h )/
r 0 = o 10 - 1} . As oceanic regions comprising 70% of the Earth's surface
area and non-mountainous regions make little or no significant contribution
to topographical effects, the magnitude of the effects would be small if the
above criterion were satisfied. All topography with grades in excess of 50
pose problems in this respect when they occur within a few km of the point
of computation, distant zone effects being rapidly submerged by the r -3 term.
Also see section 3.5.

(3) Serious embarrassment is caused when slopes exceed 1/47. Divergent
series are obtained, making an iterative approach unstable. Discussions on
the problems of convergence are available in the literature (Moritz 1970;
Moritz 1972; Krarup 1972). For a further discussion, see section 3.5.

(4) The quantity G can have no first degree harmonic, as the solution of Stokes
problem forbids the existence of such harmonics. Consequently, the refer-
ence ellipsoid used for computing normal gravity is situated at the center of
mass of the mass distribution needed to produce values of gravity at the
surface of the Earth which would give rise to a gravity anomaly distribution
equivalent to that of G. The writer is not aware of a detailed investigation
of this problem but it is unlikely that the net effect would exceed o {5 x 10 cm}.

(5) The extension of this technique to orders of accuracy greater than that of
the flattening, is possible in theory. Such a solution could be obtained on
including all effects of relevant magnitude in Equations 27 and 28, and on
allowing for the existence of the atmosphere, noting that Stokes' integral is
strictly valid only if there is no mass exterior to the physical surface. In
addition it is necessary to take into account the Earth's ellipticity, especially
when utilizing the orthogonal properties of surface harmonics.

3.3 SOLUTION FROM DISCRETE VALUES

This technique was originally proposed by Bjerhammar who summarizes the
problem as follows (Bjerhammar 1964, p. 14).

"A finite number of gravity data (gravity anomalies) is given for a non spherical
surface, and it is required to find such a solution that the boundary values for the
gravity data (gravity anomalies) are satisfied in all given points."
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The Bjerhammar problem is differently posed to that of Molodenskii and a
different approach is used for the representation of the gravity anomalies at the
surface of the Earth. Working on the basis that the representation of the surface
gravity field can only be in terms of samples taken at discrete points at the
Earth's surface, Bjerhammar proposes the interpretation of such data in terms
of a set of model anomalies Ag* on the surface of a sphere of radius Rb which
is less than or equal to the polar radius of the best fitting ellipsoid. The appro-
priate requirement in Earth space is that any point on the Earth's surface lies
exterior to the sphere of radius Rb (the Bjerhammar sphere), whose center is
collocated xwith the geocenter.

The technique of solution can be summarized as follows. The surface of the
Bjerhammar sphere is partitioned into a grid, each element of which has a sur-
face area R 2 do-, and is represented by the model gravity anomaly Ag*, assumed
constant over the area. The disturbing potential Vdp at any exterior point P,
whose geocentric distance, as illustrated in Figure 5, is Rp, is given by

Vdp 4 Ag* 2n t 1 P (51)
_4 77 Rp n (cs ) d

n = 2

under conditions applicable to Stokes' problem. A g* obviously cannot have a
first degree harmonic and the possibility of satisfying this condition in conjunc-
tion with the geocentric collocation of the Bjerhammar sphere is subject to the
same arguments as outlined in note 4 to section 3.2.

The observational data is in the form of gravity anomalies Ag as determined at
discrete points at the surface of the Earth. Using the fact that Poisson's integral

Rb(R 2 - R%) r - H
H = - da-, (52)

4 7Tf r 3

applies without approximation to any function H which is harmonic exterior to
the Bjerhammar sphere, it is possible to define gravity anomalies A g at all ex-
terior points, if a surface distribution of the data set Ag* were available on the
sphere. Alternately, if Ag i are the gravity anomalies measured at the surface
of the Earth, the equation defining the Agi in terms of the Ag* is obtained from
Equation 52 as
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R2(R2pi - R2) v 

gi 4 R 3 dcrj (53)
j rij

where rjj is the distance between P. on the earth's surface, with geocentric
distance Rpi, and surface element do-j on the Bjerhammar sphere. Equation 53,

called a discrete integral equation by Bjerhammar (1968, p. 6), can be treated
as a set of observation equations which can be solved by standard techniques for

the elements A g*. The technique is subject to certain practical difficulties when
tested on models with heavy point masses between the sphere and the Earth's

surface (ibid, p. 67). In such cases, Bjerhammar advocates the use of the dis-

turbing potential rather than the gravity anomaly in Equation 53, presumably by
recourse to an iterative procedure. The validity of the technique hinges on

whether the resulting disturbing potential at points Pi at the Earth's surface due
to the Bjerhammar system is identical with that due to the Earth. For a sum-
mary of the proof of this condition, see (Bjerhammar 1969, pp. 452-6).

The instability of the inversion procedure due to the nature of gravitational
attraction and its susceptibility to large masses locally (e.g., mountainous re-
gions) led Bjerhammar to suggest that the more stable disturbing potential V*
on the Bjerhammar sphere be used as an intermediary in the solution on the
following lines (ibid, p. 498 et seq.).

The disturbing potential Vdi at Pi on the Earth's surface is given by Equation 52
as

Rb(Rp 2 - Rb) f V*d
V,; -~~~~do (54)Vd = 4 --r.3

As

(~ V3 R2 2 Rpi(aVd) Rb _fi 4R R ri- 3 r (R2 - R
2

+ r
2

) (R2 - R2)

(54)

+ a Vf }
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Ag is obtained from Equation 13 on considering terms greater than o (f LAg), as

Rb

87 R .p I ,3 
] . r·.Jr I 4RP2 3 (12 Rb2 )2 R 2 -r 1 i r i -V*d o3 g

(56)

Equation 58 is simplified by differencing V* from the value V*0 , which is the
value of V* at the point on the Bjerhammar sphere corresponding to P. It can
be shown (ibid, p. 499) that Equation 56 can be transformed to

Rb Vd 
Ag

i
= - R2

p

- 8 -TT R . P i . Pi (V* - V*0) da
pi -5Rpi 3 (Rp, - R2

8 77 Rp i$ V d)d

(57)

+ o f Agp ,

which is a generalized version of the Molodenskii inverse of Stokes' integral
(Molodenskii et al. 1962, p. 50).

Notes:

(1) The use of this system would, at first glance appear to be a prohibitive
task. This is not the case as the terms being integrated are scaled by r -3,
and hence only limited regions need be considered around each primary
point at which evaluations are made. Details of test in the West Alps using
a 5° x 50 area with a 15° x 15 ° buffer zone, with basic subdivisions of 5' x 5',
are given by Bjerhammar (ibid, p. 508), an iterative procedure being used
to recover the Lig*.

(2) The intellectual elegance of the method is enhanced by its ability to combine
all manifestations of the Earth's gravitational field into a single solution
entity. It must be added that this same end can be achieved by using the
methods proposed by Krarup (1969), though the problems associated with
practical implementation have yet to be tackled in the case of high precision
determinations.
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(3) The factors which have to be taken into account to extend the solution to
orders smaller than that of the flattening are similar to those outlined in
section 3.2(5),

(4) The solution, like that from Krarup's method, is unique for a given distri-
bution of data. This, of course, does not mean that the answer obtained is
correct to the order of accuracy with which the problem is formulated.
Data requirements for solutions of the boundary value problem are dealt
with in section 4.

(5) For completeness, the solution should incorporate terms of zero degree as
in section 3.2.

3.4 SOLUTIONS FROM GREEN'S THIRD IDENTITY

Considerable work has been done in this field (e.g., Arnold 1959; Koch 1965;
Moritz 1965; Mather 1971c). The basic integral used is Green's third identity
which is obtained by the application of Green's theorem to two scalars r- 1 and
W which is harmonic in the volume Ve exterior to a surface S. On combining
the gravitational and rotational effects (e.g., Heiskanen and Moritz 1967, p. 15),
the final expression obtained for the gravitational potential (Wp) .at a point P on
the surface S, on the assumption that all matter is contained within S and rotates
with constant angular velocity w, is

Wp = 27W I NW- WV1 NK ) dS - 2 c 2ff.dVi (58)

where V = x i, i being unit vectors along the axes xi of a Cartesian co-

ordinate system, and r the distance of the elements of surface area d S and
volume dVi interior to S, from P. A similar expression is obtained for the
potential Up due to a gravitating reference ellipsoid which has the same rota-
tional characteristics of the Earth, on considering the identical surface S, which
is that of the Earth, when

U 1 v NU -UVN dS - 2w2 fJJ dVi (59)

N in both Equations 58 and 59 being the unit normal vector to S at dS.
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Both equations hold exactly if U and W are harmonic exterior to S. This condi-
tion requires that no matter exists on either system exterior to the Earth's
surface. The practical consequences, which are of significance when resolution
approaching the order of the flattening is sought as the end result of computa-
tions, are the following.

1. The reference ellipsoid must always lie within S. As S coincides with
the ocean surface over 70% of the Earth, the reference ellipsoid must
be smaller than the ellipsoid which best fits the geoid by an amount
greater than the largest negative geoid undulation (o { 10 2 m ).

2. There should be no atmosphere exterior to S if Equation 60 is to hold
to accuracies in excess of the order of 10 - 2 Vd.

3. Both the reference ellipsoid and the Earth are assumed to rotate with
the same constant angular velocity w. Irregularities in the Earth's
rotation have to be allowed for as corrections to observations in in-
stances where such magnitudes are of significance. For details, see
sections 2.2 and 4.

The practice to date has been to treat atmospheric effects as those which should
be modeled and allowed for as corrections to observations prior to use in com-
putations (e.g., IAG 1970, p. 18). In a recent solution Mather (1973, p. 28 et seq.)
formulated a solution of the boundary value problem to o { e 3 hd}) by separating
the gravitational effects of the atmosphere from those of the solid Earth and
oceans.

In conventional solutions, the disturbing potential Vd is obtained on differencing
Equations 58 and 59, when

V W - U 1V dS. (60)dp P P 2 d r r V) d (60)

This equation is not valid to orders smaller than o (10 -2 Vd} as it assumes the
geopotential W to be harmonic outside S. A function which does satisfy Laplace's
equation exterior to S is the potential W' due to the solid Earth and oceans,
which is related to W by the relation

W' = W - Va, (61)

where Va is the potential of the atmosphere, which is of order 10- 6 W, and more
a
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significantly, Va = o {10 -2 Vd} . As such, it is desirable to construct a theory
which allows for its existence in the course of the derivation.

The final solution using this technique can only be obtained by iteration, the
number of iterations required as in the surface layer method, being a function
of the accuracy sought. Favorable conditions for the adoption of an iterative
procedure are the following.

a. A significant amount (>90%) of the power should be generated in the
first iteration.

b. The iterative procedure should have the ability to converge to the
correct result.

c. The number of iterations necessary for achieving the desired degree
of resolution should be as small as possible.

When surface gravity is the sole source of information, the only procedure
available for obtaining an adequate first approximation to the height anomaly hd
is the use of Stokes' approach. Fundamental to this technique is the assumption
that the disturbing potential is harmonic exterior to and on the surface S, and
therefore can be expressed in the form

A
Vd n / 1 (62)

n=O

where

n

An A m (63)

m=0

and

All Pnm(sin ~bc) [Cnm cos mk + Snm sin m&] (64)

the last equation being the standard expression for a surface harmonic.

The adoption of this model enables the combination of the effects of the dis-
turbing potential Vd and its vertical gradient a Vd /a h on using Equation 13,
thereby transforming this formulation to a representation of the observed quan-
tity, the gravity anomaly Ag. Details of the problems involved in obtaining a
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solution of the boundary value problem to order e3 hd are dealt with by Mather
(1973, p. 31 et seq.). To preserve flexibility in the formulation of results to
any required order of accuracy, it is desirable to retain physical relevance in
the derivation by constructing the integral at 60 such that the disturbing poten-
tial Vd is replaced by the quantity

Vd = Vd - Va, (65)

where Va is the potential of the atmosphere.

A generalized solution which did not consider either the existence of the atmo-
sphere or the fact that the potential of the geoid was not known, the latter being
disregarded after due consideration as a quantity which correctly cannot be de-
termined from gravimetric methods alone (Molodenskii et al 1962, p. 104), was
formulated by Molodenskii in 1945 (ibid, p. 93). A specific solution was given
by Arnold (1959), which could be written as

h = - g a tan ,6a ) f () du

(66)

d+ dJr 3 [(h -r ) + R sin io V - dh

where ~ are the components of the deflection of the vertical, f(¢) is Stokes'
function, tan /3, being the components of the gradient of the ground slope in the
north and east directions,

dh
r cos A' tan 3, (67)

where

A' = a A; = 2 T - Co (68)

and ro is given by Equation 35. A revision of the derivation to the order of the
flattening showed that (Mather 1971c, p. 85)
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(69)

fI I + -h) + Rmsin dr 2 - y tan i dr + of hd),
2 71 -y rm drr 2

if

(h - h)]2

. = o ff, (70)
r 0

and Laplace's equation were satisfied to o {f V2 d } at all points exterior to,
and on S. Equations (66) and (69) would be equivalent if

2 TJf a tan ia f (b) do = Rm J rR da tan Da dad. (71)

The effect of the terms common to the kernels of the integrals on either side of
the equality in Equation 71 can be expected to arise from only 30% of the surface
area of the globe. Significant contributions to hd will be restricted to only about
5% of the surface area, being about one order of magnitude smaller than A g if
f ='o {10- 4 } and tan / = o {10-1 ). The high probability of correlation be-
tween the signs of i:b and ib in regions where the latter has significant magni-
tude, indicate that this effect is likely to be always positive. As hd = o { 102 m),
it is realistic to estimate the effect of the above term as o {5 x 10 cm), the
effect being consequential if regions of mountainous topography occur near the
point of computation.

The first term in the second integral at 69 converges much more quickly with
increase in r o and can be treated as a purely local effect. The advantage of the
solution at 69 over that at 66 is the fact that all terms due to the interaction be-
tween the ground slope and the slope of the equipotential can be treated as purely
local effects, giving solutions where the neglected effects do not have magnitudes
much in excess of the order of the flattening. Another advantage of the solution
at 69 is its unambiguous definition in Earth space as the Stokesian term defined
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a contribution with reference to an ellipsoid whose center is at the geocenter of
an Earth which had no atmosphere.'

The generalization to order e3 in hd (i.e., +5 cm) deals not only with the effect
of the topography, the interactions between the slopes of the topography and the
equipotential surfaces of the Earth's gravitational field, as well as the atmo-
sphere, but is also in keeping with the physical characteristics of the scalar
potential (Mather 1973). It also establishes the nature of the relationship be-
tween the Stokesian term and the indirect effect without limitations imposed by
the simplistic approximations permitted by the adoption of a lower order of
accuracy and identifies the anomaly to be used in Stokes integral. The geometry
of the solution is also specified in Earth space, as the center of the reference
ellipsoid is located at the center of mass G' of the solid Earth and oceans, whose
co-ordinates Xei with respect to a geocentric Cartesian co-ordinate system are
given by (ibid, p. 26)

Ma
Xe.i 5 M X.i , (72)

e

where Xai are the co-ordinates of the center of mass of the model adopted for
the Earth's atmosphere, Ma and Me being the mass of the atmosphere and the
solid Earth and oceans respectively. The final formulae obtained in the solution
referred to are summarized below.

hdp = Nfp + N, (73)

where the Stokesian term Nf P is given by

W - U0 _ M{Agc} R
Nf = R + 4 jfV (f) Agc do-, (74)

yp being the value of normal gravity at P' in Figure 1, R being the radius of the
Brillouin sphere whose center is collocated with the center of mass of the solid
Earth and oceans G' and contains the solid Earth and oceans. The gravity
anomaly A gc is defined by

Agc = Ag 1 + Ag 2, (75)
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where

g Va Va

AgI = Ag + h + 2 R

Va being the potential of the atmosphere, and

2Ag2 = 1 , 2 g+ dR -gAg2 = R c -- g hM~~~~
+ o{e 3 Ag}

2 (dR) 2 = o{e3 Ag},
a h 2

where

dR = R - a(l - f sin2 kc) - h + o{f dR),

Nf
-2

R 2
+o°{f vAg}j+. a AL

c¢, = f + m - 3f sin2 qc + o{f2 }.

The angle q is computed in calculations to the order of e3 hd
latitude ,c and longitude k as

from the geocentric

j = cos-' [sin 0c sin ¢'cp + cos Oc cos ¢cp cos dk],

dX = A - Xp,

(80)

(81)

.38

(76)

if

(77)

BAg
-h = x=T

=
yli 1~

(78)

1 tan ¢c
R

m

and

(79)

(79)

where



the value without subscript referring to dor, and those with subscript p to the
point of computation P.

The indirect effect Ncp is given by

V
Vap

N -
.C-P Y

1
tan /3 + vd

Xa tan / 3 a

r2

(82)

-d h g (cA + R h + O{e3Ag}j d- d -a n, g+ 'n gJ
if

1 a2 Ag
(dR)

2
' - oWe

3
A g }

2 -6 h2

r being the distance
by

between doa and P, R being the geocentric distance, given

R = a (1 - f sin 2 S)) + h + o{f2 R}, (83)

and h the ellipsoidal elevation. The other expressions which need definition are

B X tan /3 - y7F tan /i= + Nf a tan + o{f 2Ag}, (84)

the two dimensional Cartesian co-ordinate system x, having the same significance
as in Figure 2,

2 t= R
"' tan 8a -= (1 + Cx)
r 2 r 2

dh
sin ~ dr '
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where dh/ dr is defined by Equation 67,

cos( 2
Cxx

1 AR ( 1
sin S sin T- -- cos 

G = - tan-I

2

2

1 AR 1
2 R cot 2T

m

1 R sin 
cos $ sin i' + -- sin 'l'

mn

- 8 + o{f2 }

+ 

+a)
+ o(f 2 tan 9)

if ¢ > 50,

AR = Rp - R,

8 = f sin 2 O
c

cos a, + o{f2 }.

The term FD is given by

=2 [R - Rp cos (¢i + '- 1,r 2 L P

and

dR
1 + 2 R

CA = -1 
(1 +. c-)V2 ,

Cr =
dR + dRp

+ o{f2),
R m
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and

(87)

(88)

(89)

(90)

where

(91)

(92)

- 0)
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and

r = 2R sin +2T (93)

Notes:

(1) The adoption of an iterative procedure to solve Equations 73 to 93 cannot
be avoided. See note (1) to section 3.2 for background. Mather (ibid, p. 49
et seq.) has suggested an iterative procedure which requires three itera-
tions of the expression for Nop to achieve an accuracy of 5 parts in 104
(i.e., o { e3 hd}), while the Stokesian contribution need be evaluated only
once, but in two stages.

(2) The first two terms in Equation 74 are of zero degree and are meaningful
only when the surface gravity field is sufficiently well defined to give rise
to an adequate definition of the global mean value of surface gravity anoma-
lies. Present day solutions, which are heavily dependent on satellite deter-
mined low degree harmonics of the Earth's gravitational field, tend to ignore
the effect of these terms. For a further discussion of zero degree effects
which would be of consequence in solutions based on adequate distributions
of surface gravity alone, see section 5.

(3) It could be construed that the conditions attached to Equations 77 and 82 are
a limitation on the development outlined above. The relevant terms which
are omitted have a net differential effect of

1 fF1l- 1 - 2 Ag

4 JJ-l Rf (%) - ] (dR) 2 g d_

on h d which would be negligible if the quantity ' 2 Ag / a h2 had random error
characteristics over areas larger than 104 km 2 with magnitudes of order
10-8 mgal m - 2 , which is only one of magnitude smaller than that of 2 y// h 2 .

(4) The components of the deflections of the vertical df, are computed on the
principles outlined in Equations 16 to 24. A series of expressions which
include effects with magnitudes of the order of the flattening are given by
Mather (1971c, p. 86 et seq.). Such expressions should be adequate for
evaluations of hd to o {e3 hd}, but fail if accuracies of this type are required
from the deflections themselves. Extension would principally require the
use of an ellipsoidal co-ordinate system and a more careful evaluation of
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some of the higher derivatives of characteristics of the gravitational field
which have been assessed as having insignificant effects on the height
anomaly.

3.5 CONCLUSION

The formulation of a solution for the boundary value problem at the physical
surface of the Earth, in contrast to Stokes' problem where there is no topography
exterior to the geoid, calls for the evaluation of "topographical" terms which
arise as a consequence of

(a) departures of the Earth's surface from a level surface; and

(b) elevation of the point of computation above or below the surrounding
topography.

The first effect has contributions with long wavelength which, on present assess-
ment of geoid determinations, should not have effects in excess of o {50 cm}
unless rugged topography occurs in the vicinity of the point of computation. The
second effect is a purely local one as it is scaled by the factor r-3, as seen in
Equations 42, 57 and 69.

The limitation in theory, of the surface layer method is the heavy reliance it
places on the convergence of the series in Gi, defined at 43, in a mathematical
sense. It may appear to be paradoxical in practical terms, that the slope of the
topography of distant areas, which at least to a first order of approximation,
are in isostatic compensation, can affect computations of the height anomaly.
These terms occur because the gravity anomaly used in computations and de-
fined by Equations 10 and 11, reflect the mass distribution of the Earth as it
exists. If, on the other hand, a suggestion similar to that made by de Graaff
Hunter (1958) calling for the smoothing of the Earth such that slopes in excess
of 5° did-not exist, were adopted, there would be little to choose between the
methods outlined in this section for the solution of the boundary value problem.
In such a case, all the iterative methods would require only 3 iterations to
achieve 5 cm accuracy in hd.

The conclusion that a model had to be adopted for the topography was also
reached by Moritz (1972, p. 49) after a detailed study of the convergence of
Molodenskii series. This approach has recently become anathema to physical
geodesists (e.g., Molodenskii et al 1962, p. 118) as it involves making assump-
tions about the density of material comprising the upper layers of the Earth's
crust. In contrast, the quantities Ag, h, tan 8 and 'i Ag/a hi must be con-
sidered those which can be observed. In this sense, the solution described in
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section 3.4 exhibits favorable convergence characteristics, as the series involved
are not "open-ended", but controlled in magnitude, being terms in a rapidly con-
vergent power series in the parameter f(= o {10-3)). In practical terms, how-
ever, the higher differential coefficients i' Ag/ h i ' are unlikely to be determined
and the adequacy of Equation 69 will depend largely on the magnitude and wave-
length of the series (i!)- ' h i (' iAg/h'). Cumulative magnitudes of o {+0.5 mgal}
with wavelengths of 100 km or less can be considered to be acceptable for solu-
tions to order e3 hd , a s discussed in section 4.

Reverting to the question of smoothening the topography in order that grades do
not exceed 10 - , the problems which have to be resolved if such a procedure
were adopted as everyday practice in physical geodesy are the following.

(a) The principles underlying the transfer of mass and their associated
consequences should be clearly defined.

(b) The question of assigning a density for each element of transferred
will have to be dealt with, as the resulting corrections to observed
gravity, will depend on the model adopted for these masses.

If such procedures were deemed to be necessary, it would be mandatory to adopt
a model for the Earth with surface slopes less than 5° . The transfer of matter
to achieve this goal will change both observed gravity as well as the location of
the center of mass of the physical system. The exact numerical value of the
corrections made will depend on the principles adopted for the mass transfer.
Physical geodesists advocating this type of approach will have to face up to the
philosophical problem of which elements of topography to flatten out or fill. It
is most important that a single model be adopted in order that the geodetic com-
munity is not subject to a confusing variety of results which are not in agree-
ment, not because of significant factors, but merely as a consequence of the
adopted smoothening procedure. The limited surface gravity data available at
the present time continues to keep the above problem in the area of academic
interest alone. It is one in which continued discussion is to be encouraged.

The solution of Molodenskii's problem by means of analytical continuation
(Moritz 1969; Marych 1969) has not been dealt with as it has been shown to be
equivalent to the solution using the surface layer approach (Moritz 1971).
Another method which may prove to have some benefits is the use of numerical
integration techniques, on which published material is hard to come by.
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4. PRACTICAL CONSIDERATIONS

4.1 INTRODUCTION

Practical considerations fall into two distinct categories. The first concerns
the optimum sampling of data in order that the necessary precision can be
achieved in numerical computations. The second is the extraction of the most
probable results from' whatever (inadequate) data is available. The second falls
beyond the scope of this review and is covered elsewhere in this Symposium.
One exception is the use of Molodenskii and Cook truncation functions to obtain
the maximum information from satellite determined gravity anomalies and local
gravity fields.

The problem can be summarized as follows. Over 90% of the power in hd comes
from Stokes' integral. Many regions exist where dense local gravity fields exist,
but where beyond some limiting angular distance hb0 , the available gravity data
from the analysis of the orbital perturbations of near Earth satellites on com-
bination with whatever surface gravity exists, can be represented as a set of
surface harmonics, of the type given in Equations 63 and 64. The Free Air
Geoid at Equation 74 can be written as (Molodenskii et al 1962, p. 147)

Wo - Uo M{Ag} R___ o 27
Nfp - + f (P) Ag sin tb dub da

0 J

(94)

+ QL Agn, n f 1,
n=O

where the gravity anomaly A g to be used in Stokes' integral is expressed by the
set of surface harmonics

00

Ag = E Agn, n 1. (95)
n=O

Qn is Molodenskii's truncation function given by

Qn = f (P) Pn0 (cos b) sin b d+j, (96)
0~
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P, 0 (cos 4) being the Legendre zonal harmonic. Values of Qn for various values
of t0P are given by Molodenskii and his co-workers (ibid, p. 150) to n = 8,
de Witte (1967) to n = 25, and Hagiwara (1972) to n = 18. The computational
efficiency of this method over the use of surface quadratures techniques for
distant zone effects, in the present era where distant zone fields are heavily
dependent for quality on satellite data, is a factor of 70 (Ojengbede 1973, p. 32).
In practice, only a limited number (at present, up to degree and order 20) of
such harmonics are available and a rounding off error will occur in the compu-
tations, due to the existence of a residual in the power spectrum of gravity
anomalies, on adopting the surface harmonic representation. Molodenskii uses
an elegant technique to show that the use of harmonics to n = 8 with surface
gravity representations up to '0 = 23° results in errors less than 2 m, while
extension of surface gravity coverage to q 0 = 350 reduces the truncation error
to less than 50 cm (Molodenskii et al 1962, p. 164).

Similar considerations apply to the computation of the Vening Meinesz contribu-
tion to the deflections of the vertical using Cook's truncation function (Cook
1950, p. 377), the equation equivalent to 94 in this case being (de Witte 1967,
p. 455)

12 f (qp)] 1
f'P = 47I

T
A Ag cos A, sin b d + (n - 1) Cl qn(97)

n=2

where

1 CC
Canl .47T (n - 1) y jAgn Pnl (cos ') cos A, do- (98)

Aa being defined by Equation 19, while Cook's truncation function qn is given by

cos V2 'o0

q = - a [f(q)] Pnl (os b) d(cos ).(99)

The relationship between the functions Qn and qn has been established by Hagiwara
(1972, p. 461) who gives a proof of the equivalence of the developments by Molo-
denskii and Cook. On using the same values of n and bp0 described in the previous
paragraph, Molodenskii shows that the truncation errors in 6a are less than
1.1 are sec and 0.2 arc see respectively in the two cases given.
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It can be concluded with confidence that the use of truncation functions is capable
of giving a resolution equivalent to the best astro-geodetic results, as is borne
out by determinations in Australia (Mather, Barlow and Fryer 1971, p. 19) and
the tests carried out by Ojengbede (1973, p. 41).

4.2 SAMPLING THE GRAVITY FIELD AT THE SURFACE OF THE EARTH

The overwhelming majority of surface gravity data available at the present time
has been surveyed for geophysical purposes motivated by regional considera-
tions. Such information has to be carefully screened before being put to geodetic
use. There are problems that arise in the establishment of the value of observed
gravity itself. Until recently, most gravity determinations of quality were made
by differential means using gravimeters. It is now possible to carry out an
absolute determination of g with a resolution of +50 /Lgal using a transportable
apparatus (Morelli et al 1971, p. 17) while resolution at the ±3 /Lgal level has
been reported by the apparatus at Sevres, France (Sakuma 1971).

It is all important in the first instance that all values of observed gravity are
correctly referred to the unified gravity standardization network defined by the
"International Gravity Standardization Network 1971" (IGSN71) or an equivalent
global control network in order that datum discrepancies may be minimized if
not eliminated.

The solution of the boundary value problem requires an evaluation of the gravity
anomaly. This requires a knowledge of

(a) the geodetic latitude dg of the gravity station to 0.04 arcsec (+3 cm)
for an accuracy of 1 l/gal; and

(b) the geopotential difference AW with respect to the geoid to ±0.003 kgal m
for a resolution of 1 /ugal in the gravity anomaly Ag, in addition to the
requirement stated earlier for values of observed gravity. This also
calls for the definition of a datum for the geopotential differences on a
global basis and to some desirable degree of resolution.

The status at the present time is as follows. While IGSN71 is available, it is
most unlikely that any of the large gravity data banks are reliably connected to
this network in toto at the present time. Most values of normal gravity are
computed from regional geodetic co-ordinates of gravity stations which are
unlikely to differ from geocentric values by more than 10 arcsec. Thus all
values of normal gravity computed in a continental area covered by one of the
regional datums (usually up to 5% of the Earth's total surface area) are subject
to systematic errors not exceeding +1/4 mgal.
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The lack of a global datum for geopotential cannot cause errors much in excess
of 1/2 mgal if the datum for elevations were based on at least one year's tide
gauge readings, and as there is no evidence available at present which indicates
that the magnitude of stationary sea surface topography is much in excess of
±2 m. While these magnitudes appear to be small, their effect on the evaluation
of Stokes' integral is significant, being systematic in character.

Present day geoid computations from surface gravity data are therefore limited
in effectiveness as a consequence of irregularly distributed data which could be
subject to systematic errors due to the effect of inadequately defined datums on
the data set used in the computations. The existence of such effects cannot be
tolerated when the data is required for the determination of the geoid with the
highest possible precision in studies of sea surface topography, whose magnitude
is unlikely to exceed 2-3 m. The term sea surface topography refers to depar-
tures of the ocean surface from an equipotential surface of the Earth's gravita-
tional field and is partially due to salinity, meteorological and tidal effects. The
magnitude of the residual departures on allowing for these factors, and termed
stationary effects, can only be estimated from manifestations along coastlines
which have been obtained by comparing the results of geodetic levelling with tide
gauge readings. Departures which cannot as yet be explained, have been re-
ported in Australia (Hamon and Greig 1973) and the United States (Sturges 1972)
with slopes approaching or in excess of 0.1 arcsec. On balancing existing satel-
lite altimeter technology against the oceanographic requirements, it would ap-
pear that a ±10 cm resolution in the determination of the geoid is a desirable
goal for this purpose (Williamstown Report 1969, 3-2).

The criteria governing the factors which constitute a "desirable" representation
of the gravity field for the solution of the geodetic boundary value problem, is
dependent on the requirements for the solution of Stokes' integral which, as dis-
cussed earlier, provides over 90% of the power in the representation. This
would apply to any of the techniques of solution described in section 3. The fol-
lowing is a summary of a recent look at this problem (Mather 1973, p. 53 et seq.).

A suitable form of Stokes' integral for quadratures evaluation is

Nf( c m) = K n2 E ij f (qJij) Agimgal) ' (100)f i J
i j

where Agij is the value of the gravity anomaly representing a nix n ° square,

K . 1.58 x 10 - 2, (101)
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and Lij = cos Ocij or sin qij depending on whether a latitude-longitude or
azimuth-distance system of co-ordinates is used. Equation 100 would be ade-

2/n\2
quate if the subdivision of the basic ni° x ni° square into N (= (m) ) m0 x m°

squares (m < n i ), where the k-th such square will be represented by the gravity
anomaly A gk at an angular distance ok from the point of computation P such
that

Agk = g + gk ; F (k) = F (Q) + Cpk, (102)

A g and F (5) being given by

1 1 N
Ag AN L g ; F (p) -N F (k), (103)

k=1 k=1

and the use of these smaller subdivisions in the quadratures evaluation in lieu
of the n ° x n ° and the appropriate area mean, did not reduce the quadrature
error to below the desired order of accuracy (o {e }). This would happen if

N

Z Cgk Clk = OE}, (104)
k= 1

implying no correlation whatever between variations in f (q) and A g over the
n ° x n ° area. While the function F (q), given by

F (J) = f () sin 4, (105)

has predictable variations, A g defies accurate prediction except over very short
distances and under carefully controlled conditions. As gravity has to be sampled
at discrete points, the quadratures approach makes a representation procedure
mandatory. Consequently, some finite element of surface area has to be repre-
sented by a single observation. It is useful to bear in mind that

(a) the global gravity standardization network available at present has a
station accuracy of ±0.2 mgal (Morelli et al 1971, p.p. 6);

(b) errors in gravimeter ties seldom exceed ±0.2 mgal if performed with
adequate instruments and any sort of minimal care; and
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(c) geopotential errors of o {3 kgal m} give rise to a o {1 mgal } error in
the gravity anomaly.

A precision of ±1 mgal in the gravity anomaly is relatively easy to obtain in
areas where the regional geodetic level network is reasonably dense. The
gravity anomaly also undergoes changes with position at different points in the
basic square it is expected to represent. This penchant is characterized by a
quantity introduced by de Graaff Hunter (1935), called the error of representa-
tion E {A gmn} for an no x m° square, which in'the case of a fully represented
square, is given by

N (Ag, -'Ag) 2

(E (g)nm)2 - - N (106)
i=l

A reliable value for E ( A gm}) is obtained from N evenly spaced values of Ag
i

covering the no x m° square, A g being the mean value of the gravity anomaly,
given by

N

Ag N E Ag..i (107)
i= 1

Several estimates of this statistical characteristic of the gravity anomaly field
at the surface of the Earth are available in the literature (e.g., ibid; Hirvonen
1956; Molodenskii et all 1962, p. 172; Mather 1967, p. 131). Samples which are
available at the present time from different parts of the globe, reflect the flatter
continental areas. E {Ag}, in such areas is a function of square size and, in
general terms, can be expressed by the relations

r ±C1 Vn '
0

o < n < 5 °

E {Ag n = (108)

L ±C2 n < 1/4 0

for an no x no square, where n is in degrees and E ( Ag ) in mgal, when C1 12
and C2 3 x 10. It can also be shown that E { A g In is a function of unsigned
groundslope [ /1, with magnitudes which can be as much as 5 times as great in
very rugged mountainous areas especially when n is small. As such variations
are not a function of elevation but of ground slope, it is estimated'that about
2-5% of the Earth's surface will require values of C1 and C2'which are
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significantly greater than these given above, for an adequate representation of
variations in the gravity anomaly.

The number of terms involved in the quadratures evaluation is a function of the
accuracy desired in the computation. If the requirements of sea surface topog-
raphy determinations (1 part in 104) were to be met, it would be necessary, for
estimation purposes, to restrict square sizes to those over which the contribu-
tions of the terms containing the second differential coefficient of F (@) were
held to o {e3 hd). The required number of summations is o {106 }. The study
of the propagation of systematic and random error characteristics through Equa-
tion 100, under these conditions, shows that an adequate representation of the
surface gravity field which would enable the achievement of an accuracy of
: 10 cm in the final result would be one which had an E { A g} value of ±3 mgal,
if the data were not subject to systematic error in excess of +50 ,ugal. Such a
representation is afforded by a 10 km grid in nonmountainous areas. While the
estimation characteristics of gravitationally disturbed regions are covered by
the above figures, which assume that oceanic fields will have a similar tendency
to vary as continental data, regions characterized with larger ground slopes,
have significantly greater values of E { A g}. It would be necessary to reduce
the size of the grid in such cases to retain E { A g } at ±3 mgal. The use of
smoothening techniques described in section 3.5 would of course reduce these
values. It follows that present day techniques for establishing surface gravity
anomalies are adequate for the determination of sea surface topography. It is
interesting to note that the station spacing required on the above basis, is already
available over large continental areas, like the United States, Canada and
Australia, at the present time.

The consequences of systematic errors in A g which hold the same sign over
considerable extents, have significant effects on computed values of hd. A sys-
tematic error eAg which holds its magnitude over a no x no area but has random
error characteristics over larger extents, is shown to have an effect eNs on the
computed value of hd given by (ibid, p. 65)

eNs ±= +o {K"n eAg} , (109)

where K" - 10, for eNs in cm, n in degrees and eAg in mgal. If eNs were held
at +5 cm, the estimate of the magnitude of the permissible systematic error eAg,
which is inversely proportional to its wavelength, varies from o {±5 mgal } when
n = 0.10 to o {i0O.1 mgal} when n = 5° .

Likely sources of systematic error have been listed at the commencement of
this subsection. The following conclusions can be drawn.
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(1) IGSN71 would be an adequate gravity standardization net for sea sur-
face topography studies only if the station density were 1 per 5 x 104 km2

and the errors of adjacent stations were not correlated at the 200 p/gal
level. Neither of these conditions is likely to be satisfied. An adequate
net would be afforded by stations at which absolute determinations had
been carried out to ±50 /Lgal resolution, and a representation of 1 sta-
tion per 106 km 2 . In the interim, it would be advisable that all gravity
data should be subject to randomzation procedures at the level of the
precision of the gravity standardization network, prior to use in solu-
tions of the boundary value problem.

(2) Gravity anomaly information on each geodetic datum should be cor-
rected for changes in normal gravity due to the datum not being geo-
centric (ibid, p. 16).

(3) The term "geoid" which is assumed to be synonymous with both the
global datum for elevations as well as the "undisturbed" free level of
the sea, should be defined on the basis of models which afford resolu-
tion with an accuracy of ±10 cm.

A possible problem of some significance in the determination of sea surface
topography and other high precision determinations of hd, is the existence of
the sea surface topography itself with not insignificant amplitudes (e.g., 3-4 m)
and substantial wavelengths. The evidence for the existence of such phenomena
is widespread but based on purely coastal phenomena, as obtained from levelling-
tide gauge comparisons. Extended studies of the sea surface using short pulse
high resolution satellite altimeters should go a long way toward clarifying
whether stationary sea surface topography is merely a coastal phenomenon, and
if not, the dominant wavelengths with which it is prone to occur. The existence
of stationary sea surface topography with 4000 km wavelengths and 2 m ampli-
tudes would cause errors of o {±1 m} in hd. While this estimate is based on
the largest estimate of the phenomenon presently available, the existence of
such an effect will require an iteration of the determinations of hd. The rapidity
with which these iterations converge are more a function of the wavelength of
the stationary sea surface topography than of its amplitude.

5. GRAVITY AND EARTH SPACE

5.1 GRAVITY AND SCALE

A problem which requires careful scrutiny is the possibility or otherwise of
defining a scale for Earth space from gravity determinations at the surface of
the Earth. It must be clearly emphasized that the ensuing development excludes
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consideration of satellite data which constitutes the basis of low degree
representations of the Earth's gravity field at the present time. The problem
could be stated as follows. Given an adequate distribution of determinations of
surface gravity, how are effects of zero degree hdo in the global distribution of
height anomalies to be interpreted. This effect can be written as

Wo - Uo M{Ag c

hdo - R + Nco + o{fhdo} (110)

on considering Equations 73 and 74, Nc0 being the contribution of zero degree
by the indirect effect No. WO is not known and it is common practice to assume
the first term to be zero. The second and third terms will have finite magni-
tudes which could be made equal to zero by changing the value of G M, and hence
M { A gc} . This would, of course change the value of U0 , implying an equivalent
change in the estimate of WO if hdo is to remain zero. hdo could only be forced
to take zero value if this is justified by some external condition.

A more realistic procedure is to establish the numerical value of hdo by
analyzing the differences

Vi = ddi + hn - h0i, (111)

where h0i is the ellipsoidal elevation based on the same reference ellipsoid as
used in the gravimetric determination, but from independent observations, e.g.,
geocentric satellite solutions. The adoption of a value for G M used in defining
the system of reference will in turn define a value for W0 , on extracting a zero
degree residual from 111 and using it in Equation 110.

Any "improvement" in the value of GM obtained from gravimetric determina-.
tions is based on the assumption that the potential of the geoid WO is equal to
that on the ellipsoid of reference U0 . The geoid is a physical reality, being a
manifestation of the mass distribution which gives the observed phenomena at
the surface of the Earth, while UO is defined by the values chosen for each of
the parameters a, GM, co and f defining the system of reference. It has been
deduced that the term (W0 - UO) /y is approximately 3 m if the ellipsoid were
one of best fit to the geoid and GM were the best estimate available for the
Earth (Mather 1971c, p. 98), provided the free air anomaly had no zero degree
harmonic.

Thus any deductions which can be drawn about scale from gravimetric deter-
minations alone are subject to ambiguity, if restricted to a single epoch. It
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would be prudent to refrain from distorting the physical characteristic of the
Earth represented by the value of G M, as determined with reliability, by inde-
pendent means. The effect of zero degree deduced from comparisons described
by Equation 111, can preferably be used in Equation 110 to deduce the true value
of W0 . The effect of zero degree is therefore fully accounted for in Equation 74,
and values of hd will no longer give rise to effects of zero degree in Equation 111.

A second effect of importance is the term of zero degree obtained on studying
changes in observed gravity determined by the use of absolute techniques to
resolutions approaching ±1 /,gal, as determined on specially designed observing
platforms, well distributed around the Earth, between successive epochs in time.
Such changes can be interpreted as either reflecting an expansion of the Earth,
as measured within the framework of the velocity of light, or else a change in
the value of GM. For a discussion see (Mather 1972, p. 15).

5.2 GRAVITY AND GEODETIC REFERENCE SYSTEMS

The preceding development has assumed that the Earth has a fixed mass distri-
bution subject to some periodic changes due to effects like tides. Such a descrip-
tion would only be adequate if observations referred to a limited period of time,
such as a few decades. There is considerable evidence which appears to point
to the large scale redistribution of at least the masses constituting the Earth's
crust over very long periods of time, with the attendant possibility of mass
variations at greater depth depending on the nature of the mechanism which
could give rise to such crustal motions.

A possible consequence of such mass redistributions could be a motion of the
Earth's center of mass (geocenter) with respect to the Earth's crust. The
analysis of high precision determinations of absolute gravity at a well distributed
net of observing platforms as described in the previous subsection, could provide
a means of recovering the motion of the geocenter between epochs on analyzing
the first degree harmonic of changes in absolute g (ibid 1972, p. 15). It should
be pointed out that a problem in filtering out short period effects due to meteoro-
logical causes has to be overcome before results of reliability are likely to be
obtained. Fortunately, an estimate of the same effect can be obtained on studying
changes in geocentric position of a global network of laser tracking stations,
using dynamic techniques, to provide a verification of the effectiveness of the
determination.

53



5.3 THE ROLE OF GRAVIMETRIC METHODS
IN EARTH AND OCEAN PHYSICS

Until recently, it was generally held that gravimetric methods if used with
adequate data, provided the only non-controversial technique for computing
ellipsoidal elevations with the same resolution as that available from geodetic
levelling, thus completing the definition of geocentric position of points on the
Earth's surface in three dimensions. Position determination at the present
time has not provided resolutions which can confidently be claimed to be better
than 1 part in 106.

It is now clear that the most precise determination of geocentric position is
required primarily for studies in Earth and ocean physics, rather than for any
direct engineering or technological purpose. It would not be exaggeration to
state that resolution to 1 part in 108 would be the aim of geodetic techniques
being currently developed for such schemes. While there is no clear indication
that surface methods, subject to restrictions imposed by atmospheric uncertain-
ties, can be improved to meet these goals, extra-terrestrial techniques, like
laser ranging to near Earth satellites and VLBI, promise that such goals may
well be attained in the foreseeable future. There also is no reason to doubt at
this stage, that transportable versions of these systems could not achieve this
same degree of resolution.

It would therefore appear that, with the passage of time, there would be less
use of geodetic levelling and the systems of reference implicit in its concept,
for use in Earth physics. The exception is of course the study of the instan-
taneous geocentric position of the ocean surface and the interpretation of these
results for the study of ocean circulation. The determination of the geoid with
the highest possible precision are a necessary prerequisite for such studies.
Gravity information will still have to be assembled and anomalies computed on
the basis of elevations referred to an equipotential surface, the most convenient
being the geoid.

Three matters of significance which should be closely studied before undertaking
the task of assembling an adequate gravity anomaly field for computation of
geoid heights to ±10 cm, are the following.

(a) The definition of a physical model to serve as a datum for elevations
with an accuracy which is not more than a factor of 3 less the highest
precision sought in the geoid solution.

(b) Techniques to be used for minimizing the effect of gravity base station
errors on geoid computations.
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(c) The question of whether it is necessary to adopt a model for the
"surface of measurement" and, if so, the nature of an acceptable model
and the procedure to be adopted in converting measurements on the
Earth's surface to equivalent quantities on the model.
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